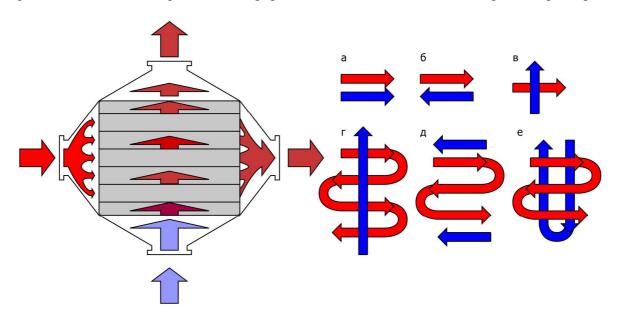
План лекции:

- 1. Теплообменные аппараты. Общие сведения.
- 2. Классификация теплообменных аппаратов
- 3. Тепловой расчёт рекуперативных теплообменных аппаратов
- 4. Тепловой расчёт регенеративных теплообменных аппаратов
- 5. Гидравлический расчёт теплообменных аппаратов
- 6. Вопросы для дистанционного освоения лекции

1. ТЕПЛООБМЕННЫЕ АППАРАТЫ. ОБЩИЕ СВЕДЕНИЯ.

Теплообменными аппаратами (теплообменниками) называются устройства, предназначенные для передачи теплоты от одного теплоносителя к другому.


Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники. Теплообменники применяют в системах охлаждения, кондиционирования, теплосиловых установках летательных аппаратов, в энергетических установках (в циклах ГТУ с регенерацией тепла).

2. КЛАССИФИКАЦИЯ ТЕПЛООБМЕННЫХ АППАРАТОВ

По принципу действия теплообменники подразделяют на три вида: рекуперативные, регенеративные и смесительные.

Рекуперативные теплообменники представляют собой два изолированных друг от друга канала, разделённых поверхностью теплообмена (рабочей поверхностью теплообменника).

Теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер.

Рекуперативные теплообменники подразделяют:

(в зависимости от направления движения теплоносителей)

Прямоточные (а) - теплоносители движутся параллельно в одном направлении.

Противоточные (б) - теплоносители движутся параллельно в противоположных направлениях.

Теплообменники с перекрестным током - теплоносители движутся во взаимно перпендикулярных направлениях, при этом возможен **однократный** (в) и **многократный** (г) перекрестный ток. Возможны также **сложные схемы движения** теплоносителей (д) и (е).

(в зависимости от формы рабочей поверхности)

Трубчатые – один из теплоносителей движется внутри труб, другой омывает эти трубы снаружи.

Пластинчатые – рабочая поверхность таких теплообменников образована набором параллельных плоских пластин. Каналы между пластинами объединены через один общими коллекторами и образуют, таким образом, полости для каждого из теплоносителей.

(по способу использования)

Регенераторы - теплообменники, предназначенные для утилизации теплоты в газотурбинных установках.

Радиаторы - теплообменники для рассеивания теплоты горячей воды в окружающее пространство (например, в системе охлаждения автомобильного двигателя).

Воздухоподогреватели.

Маслоохладители.

Пароперегреватели.

И т.д.

Регенеративные теплообменники состоят из теплообменной поверхности, которая поочередно омывается то горячим, то холодным теплоносителем.

При соприкосновении с горячим теплоносителем стенка аккумулирует теплоту, а затем отдает ее холодному теплоносителю. Рабочие стенки таких теплообменников должны обладать значительной теплоемкостью. В регенеративных теплообменниках реализуется нестационарный режим теплообмена. Чтобы процесс теплообмена протекал непрерывно при одинаковой продолжительности периода нагрева и охлаждения, такой теплообменник должен иметь две параллельно работающие секции.

Смесительные теплообменники (контактные) конструктивно выполняются таким образом, что процесс теплообмена сопровождается перемешиванием теплоносителей, т. е. они непосредственно соприкасаются друг с другом.

Процесс теплообмена в таком аппарате имеет стационарный характер и может сопровождаться испарением жидкости. Смесительный теплообменник целесообразно использовать для таких теплоносителей, которые легко разделить после теплообменного аппарата. Например, такой парой теплоносителей является вода и воздух.

3. ТЕПЛОВОЙ РАСЧЁТ РЕКУПЕРАТИВНЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ

Различают **конструктивный и проверочный** тепловой расчет теплообменного аппарата.

Конструктивный расчет необходим для определения величины рабочей поверхности теплообменника, которая является исходным параметром при его проектировании. При этом должно быть известно количество передаваемой теплоты или массовые расходы теплоносителей и изменение их температуры.

Проверочный расчет выполняется для теплообменника с известной величиной поверхности. Цель расчета состоит в определении температур теплоносителя на выходе из теплообменника и количества передаваемой теплоты.

Рабочий процесс рекуперативного теплообменника описывается двумя уравнениями: уравнением теплового баланса и уравнением теплопередачи.

Уравнение теплового баланса идеального теплообменника (без потерь тепла в окружающую среду) записывается следующим образом:

$$dQ = -G_{1}c_{p1}dT_{1} = G_{2}c_{p2}dT_{2},$$

$$Q = G_{1}\overline{c_{p1}}\Delta T_{1} = G_{2}\overline{c_{p2}}\Delta T_{2}$$
(1)

где: G_1, G_2 - массовые расходы теплоносителя в каналах теплообменника, $\overline{c_{p1}}, \overline{c_{p2}}$ - средние значения теплоёмкостей теплоносителей в каналах теплообменника для диапазонов температур $\Delta T_1, \Delta T_2$ соответственно. $\Delta T_1 = T_{\text{IBX}} - T_{\text{IBMX}}, \Delta T_2 = T_{\text{2BMX}} - T_{\text{2BX}}$ - перепады температур теплоносителя на входе и выходе из каналов теплообменника.

Уравнение теплопередачи имеет вид:

$$dQ = k(T_1 - T_2)dF,$$

$$Q = \int_{0}^{F} k(f)\Delta T(f)df = kF\overline{\Delta T},$$
(2)

где: k(f), $\Delta T(f)$ - локальное значение коэффициента теплопередачи и температурного напора в каждой точке поверхности теплообмена k, $\overline{\Delta T}$ - средний по всей площади канала коэффициент теплопередачи и температурный напор, F - площадь поверхности теплообмена.

Формулу для определения среднего температурного напора можно получить, используя балансовые соотношения (2) и (1):

$$\overline{\Delta T} = \frac{\Delta T_1 - \Delta T_2}{\ln \frac{\Delta T_1}{\Delta T_2}}$$
(3)

- эта формула выражает среднелогарифмический температурный напор.

Если
$$\frac{\Delta T_1}{\Delta T_2} = 0.6...1.67$$
 , то формула (3) упрощается:

$$\overline{\Delta T} = \frac{\Delta T_1 + \Delta T_2}{2} \tag{4}$$

- эта формула выражает среднеарифметический температурный напор.

Для **прямоточных и противоточных** рекуперативных теплообменников формулы (3) и (4) выполняются точно. Для теплообменников с **перекрёстным током** в формулы вносится поправка, значение которой можно найти в справочной литературе:

$$\Delta T_{\text{перекр.}} = \varepsilon \Delta T \tag{5}$$

Если в пределах аппарата условия теплообмена на отдельных участках рабочей поверхности различны, то коэффициенты теплообмена и теплопередачи подсчитываются для каждого участка в отдельности, и затем определяется среднее для всей поверхности значение коэффициента теплопередачи по формуле:

$$k = \sum_{i=1}^{n} k_i \frac{F_i}{F} \tag{6}$$

Конструктивный расчёт заканчивается определением площади поверхности теплообмена:

$$F = \frac{Q}{k \Delta T} \tag{7}$$

Проверочный расчёт состоит в определении температуры теплоносителей на выходе из теплообменника. Соотношения, позволяющие определить входную температуру теплоносителей, также могут быть получены из уравнения баланса тепла (1) и уравнения теплопередачи (2). При этом для различных схем течения теплоносителей итоговые соотношения будут разными.

Например, для **прямоточного теплообменника** температура на выходе из первого канала может быть определена, как:

$$T_{1_{Bbix}} = T_{1_{Bx}} - \left(T_{1_{Bx}} - T_{2_{Bx}}\right) \underbrace{\frac{1 - \exp\left[-\left(1 + \frac{G_{1}\overline{c_{pl}}}{G_{2}\overline{c_{p2}}}\right) \frac{kF}{G_{1}\overline{c_{pl}}}\right]}{1 + \frac{G_{1}\overline{c_{pl}}}{G_{2}\overline{c_{p2}}}}}_{II}$$
(8)

на выходе из второго, как:

$$T_{2_{RMX}} = T_{2_{RX}} + (T_{1_{RX}} - T_{2_{RX}}) \cdot \Pi \tag{9}$$

Для сложных схем течения существует справочный набор функций, позволяющих проводить проверочный расчёт.

4. ТЕПЛОВОЙ РАСЧЁТ РЕГЕНЕРАТИВНЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ

Тепловой расчёт **регенеративных теплообменных** аппаратов отличается от расчёта рекуперативных теплообменников тем, что количество теплоты передаваемого горячим теплоносителем холодному будет зависеть от времени нагрева и охлаждения поверхностей теплообмена.

Так уравнение баланса теплоты (1) будет записано следующим образом:

$$Q = G_1 \overline{C_{p1}} \Delta T_1 \tau_1 = G_2 \overline{C_{p2}} \Delta T_2 \tau_2. \tag{10}$$

Здесь: τ_1, τ_2 - время нагрева поверхности теплообмена горячим теплоносителем и охлаждения холодным соответственно, $\Delta T_1 = T_{\text{lbx}} - \overline{T_{\text{lbix}}}, \Delta T_2 = \overline{T_{\text{2bix}}} - T_{\text{2bix}}; \overline{T_{\text{lbix}}}, \overline{T_{\text{2bix}}}$ - среднее по времени значение температуры горячего и холодного теплоносителя на выходе из теплообменника.

$$\overline{T_{1_{\text{BMX}}}} = T_{1_{\text{BX}}} - \frac{T_{1_{\text{BMX}}}^{K} - T_{1_{\text{BMX}}}^{H}}{\ln \frac{T_{1_{\text{BX}}} - T_{1_{\text{BMX}}}^{H}}{T_{1_{\text{BX}}} - T_{1_{\text{BMX}}}^{H}}}; \quad \overline{T_{2_{\text{BMX}}}} = T_{2_{\text{BX}}} + \frac{T_{2_{\text{BMX}}}^{K} - T_{2_{\text{BMX}}}^{H}}{\ln \frac{T_{2_{\text{BX}}} - T_{2_{\text{BMX}}}^{H}}{T_{2_{\text{BX}}} - T_{2_{\text{BMX}}}^{K}}},$$
(11)

где: индексы К и Н - означают в начале и в конце процесса нагрева или охлаждения соответственно.

Среднелогарифмический температурный напор за время цикла теплообмена $\tau_1 + \tau_2$ можно определить по формуле:

$$\overline{\Delta T} = T_{2_{BX}} + \frac{\left(T_{1_{BX}} - \overline{T_{2_{BMX}}}\right) - \left(\overline{T_{1_{BMX}}} - T_{2_{BX}}\right)}{\ln \frac{T_{1_{BX}} - \overline{T_{2_{BMX}}}}{\overline{T_{1_{BLY}}} - T_{2_{BY}}}}$$
(12)

Площадь поверхности теплообмена, как и для рекуперативного теплообменника, определяется по формуле:

$$F = \frac{Q}{k \Lambda T}$$
 (13)

5. ГИДРАВЛИЧЕСКИЙ РАСЧЁТ ТЕПЛООБМЕННЫХ АППАРАТОВ

Гидравлический расчет теплообменника необходим для определения затрат механической энергии на перемещение теплоносителей в аппарате.

При гидравлическом расчете теплообменника необходимо учитывать сопротивление трения, местные сопротивления и тепловое сопротивление.

Сопротивление трения определяется по известной формуле:

$$\Delta p_{\rm rp.} = \xi \frac{L}{d} \frac{\rho \overline{w}_{\rm x}^2}{2}, \qquad (14)$$

где: L,d - длина и эквивалентный диаметр канала, ρ - плотность теплоносителя, w_x - среднерасходная скорость теплоносителя.

Коэффициент сопротивления трения ξ в зависимости от режима течения теплоносителя можно определить по формулам:

$$\xi = \frac{64}{\text{Re}} \cdot \left(\frac{\text{Pr}_{\text{cr}}}{\text{Pr}_{0}}\right)^{0.33} - \text{ламинарный режим}$$
 (15)

$$\xi = \frac{0.3164}{\text{Re}^{0.25}} \cdot \left(\frac{\text{Pr}_{\text{cr}}}{\text{Pr}_{0}}\right)^{0.33} - \text{турбулентный режим}$$
 (16)

Число Рейнольдса $Re = \frac{\rho \overline{w}_x d}{\mu}$ - определяется по среднерасходной скорости течения теплоносителя и по эквивалентному диаметру канала.

Местные сопротивления определяются формулой:

$$\Delta p_{_{\rm M}} = \varsigma \frac{\rho \overline{w}_{_{\rm X}}^2}{2} \tag{17}$$

Коэффициент местного сопротивления для каждой особенности течения в канале определяется по справочным данным:

- на входе в трубу $\varsigma = 0.5$
- на выходе из трубы $\varsigma = 1$
- поворот потока на 180 градусов $\varsigma = 1$

Тепловое сопротивление связано с ускорением потока за счёт расширения при нагреве газа и с торможением при охлаждении.

$$\Delta p_{\text{TEIIJ.}} = \rho \overline{w}_{x \text{ BX}}^2 - \rho \overline{w}_{x \text{ BMX}}^2$$
 (18)

Общие гидравлические потери в канале теплообменника складываются из всех видов сопротивлений:

$$\Delta p = \sum \Delta p_{_{\mathrm{TP.}}} + \sum \Delta p_{_{\mathrm{M}}} + \sum \Delta p_{_{\mathrm{TEIII.}}}$$
 (19)

Мощность насоса (вентилятора) необходимая для прокачки теплоносителя можно определить по формуле:

$$N[\kappa B_T] = \frac{\Delta pG}{1000\rho\eta},\tag{20}$$

η - КПД насоса или вентилятора.

6. ВОПРОСЫ ДЛЯ ДИСТАНЦИОННОГО ОСВОЕНИЯ ЛЕКЦИИ

1. На какие три вида подразделяют теплообменники.
Ответ:
2. Как называют теплообменники представляющие собой два изолированных друг от друга канала, разделённых поверхностью теплообмена.
Ответ:
3. Запишите формулу среднелогарифмического температурного напора.
Ответ:
4. Какова конечная цель конструктивного расчёт теплообменника.
Ответ:
5. Для чего используют результаты гидравлического расчёта теплообменников.
Ответ:
Фамилия Имя Отчество:
Группа:
Подпись:
Дата: